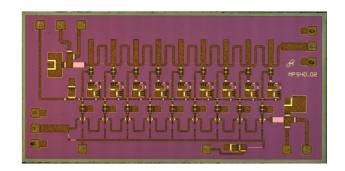
MP540


сверхширокополосный усилитель, 0,01...20 ГГц

ЖНКЮ.758773.144

- диапазон рабочих частот 0,01...20 ГГц
- малосигнальное усиление 13 дБ
- выходная линейная СВЧ-мощность 21 дБм
- коэффициент шума 4 дБ

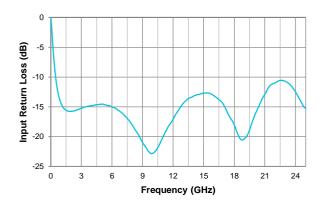
Применение

- телекоммуникация и связь
- радары
- измерительная техника

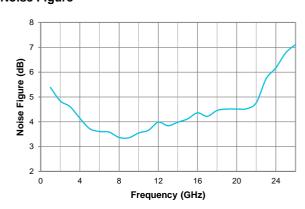
MP540 — монолитно-интегральная схема сверхширокополосного усилителя, предназначенная для работы в составе гибридно-интегральных СВЧ-модулей с общей герметизацией. Усилитель изготовлен на основе технологического процесса GaAs pHEMT с топологической нормой 0,25 мкм.

Основные параметры (T = 20 °C)

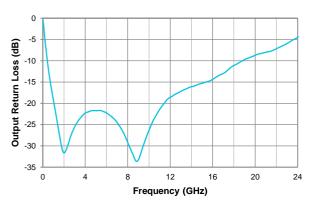
Обозначение	Параметр	Мин.	Тип.	Макс.	Ед. изм.
ΔF	Диапазон рабочих частот	0,01	_	20	ГГц
S21	Малосигнальный коэффициент усиления	12,5	_	15	дБ
S11	Возвратные потери по входу	10	_	<u> </u>	дБ
S22	Возвратные потери по выходу	10	_	_	дБ
S12	Обратная изоляция усилителя	25	_	_	дБ
NF	Коэффициент шума 16 ГГц	_	4	5,5	дБ
NF	Коэффициент шума 612 ГГц	_	3,5	4	дБ
NF	Коэффициент шума 1220 ГГц	_	4	4,5	дБ
P1dB	Выходная линейная мощность	20	21	_	дБм
VDD	Напряжение питания	_	+7,0	_	В
VGG1	Напряжение управляющего электрода	_	-0,5 [*]	_	В
VGG2	Напряжение управляющего электрода	_	+1,5	_	В
I_DD	Ток потребления по цепи (VDD = +7,0 B)	_	120	_	мА

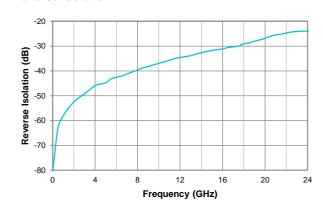

^{*} Установите VGG1 между -2 и 0 В (тип. -0.5 В), чтобы достичь I_DD = 120 мА в типичных условиях.

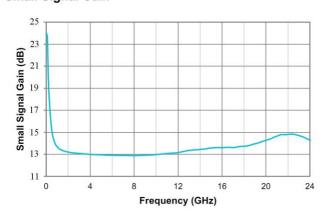
Предельно допустимые режимы эксплуатации


Параметр	Значение	Ед. изм.
Напряжение питания	8	В
Рабочая температура	-40+85	°C
Температура хранения	− 55…+125	°C

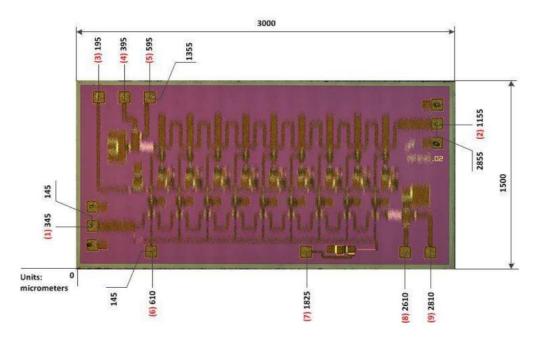
Типовые характеристики


Input Return Loss


Noise Figure

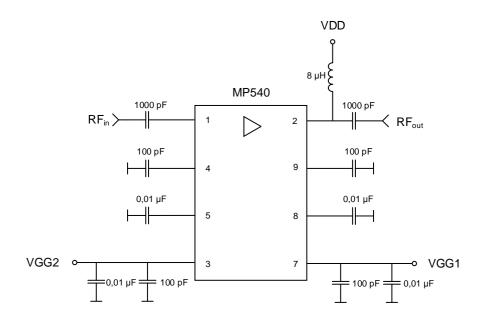

Output Return Loss

Reverse Isolation



Small Signal Gain

Габаритные и присоединительные размеры


- Габаритные размеры кристалла 1500×3000 мкм (до резки), толщина кристалла 100 мкм.
- Расстояния указаны в мкм до центра контактной площадки относительно точки «0».
- Размер контактных площадок 100 × 100 мкм.

Номер контактной площадки	Обозначение	Напряжение, В	Описание
1	RF IN	_	Вход усилителя. Вход согласован с радиочастотным трактом 50 Ом в полосе 0,0120 ГГц
2	RF OUT_DB	+7	Выход усилителя и напряжение питания. Выход согласован с радиочастотным трактом 50 Ом в полосе 0,0120 ГГц.
3	VGG2	+1,5	Напряжение управления затворным током VGG2
4,5,8,9	LFT	_	Низкочастотная нагрузка
6		_	Контакт не используется
7	VGG1	-0,5 [*]	Напряжение управления затворным током VGG1

^{*} Установите VGG1 между −2 и 0 В (тип. −0,5 В), чтобы достичь I_DD = 120 мА в типичных условиях.

Схема включения

Порядок подачи напряжения питания

- 1. Заземлить устройство.
- 2. Установить напряжение VGG1 на уровень -2 В (ток потребления отсутствует).
- 3. Установите напряжение VGG2 на уровень +1,5 В (ток потребления отсутствует).
- 4. Установить напряжение VDD на уровень +7 В (ток потребления отсутствует).
- 5. Установите VGG1 между -2 и 0 В (тип. -0.5 В), чтобы достичь I_DD = 120 мА.
- 6. Подайте СВЧ-сигнал на вход.

Порядок выключения устройства

- 1. Выключите подачу СВЧ-мощности на вход устройства.
- 2. Выключите подачу напряжения питания VDD.
- 3. Выключите подачу напряжения питания VGG2.
- 4. Выключите подачу напряжения питания VGG1.

Пример записи при заказе

Наименование	Децимальный номер		
Плата микроэлектронная МР540	ЖНКЮ.758773.144		

Рекомендации по применению

Проволочные выводы

Для СВЧ контактных площадок (1 и 2) рекомендуется использовать проволочный вывод диаметром 25 мкм и длиной 450 мкм. Для контактных площадок питания (3-5 и 7-9) рекомендуется использовать проволочный вывод диаметром 25 мкм и длиной 700...1000 мкм.

Подача напряжения питания

Для выводов с контактных площадок 3 и 7 необходимо разместить шунтирующие конденсаторы номиналом 100 пФ и 0,01 мкФ максимально близко к кристаллу.

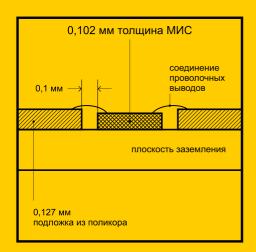


Рисунок 1.

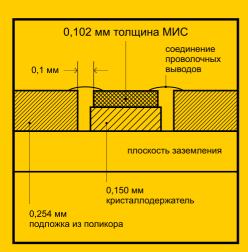


Рисунок 2.

Рекомендации по защите от электростатического воздействия

Существует опасность повреждения микросхемы путем электростатического и/или механического воздействия. Кристаллы поставляются в антистатической таре, которая должна вскрываться только в чистой комнате в условиях защиты от электростатического воздействия. При обращении с кристаллами допускается использование только правильно подобранной оснастки, вакуумного инструмента или, с большой осторожностью, остроконечного пинцета.

