ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ВЕКТОРНЫЕ АНАЛИЗАТОРЫ ЦЕПЕЙ Р4226А «ПАНОРАМА»

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ШУМА. ОПЦИЯ «ИКШ»

Измерение коэффициента шума. Опция «ИКШ»

Векторный анализатор цепей (ВАЦ) серии Р4226 «Панорама» с опцией «ИКШ» позволяет проводить измерение коэффициента шума (КШ).

Существует два основных метода измерения коэффициента шума: метод прямого измерения шума (холодного источника) и метод Y – фактора (холодного \ горячего источника). Применяемый в ВАЦ алгоритм векторной коррекции (компенсации рассогласований между исследуемым устройством и измерителем), скалярной калибровки (измерение собственного коэффициента шума измерителя), векторной калибровки (исключение влияния выходного импеданса исследуемого устройства) повышает точность измерения.

Метод Y-фактора применяется в большинстве выпускаемых измерителей коэффициента шума. Такой метод подразумевает наличие генератора шума (ГШ) на входе измеряемого устройства во время проведения измерения. Такой метод, например, применяется в *измерителе коэффициента шума серии «Х5М»*.

В векторном анализаторе цепей «Панорама» применяется метод прямого измерения коэффициента шума с векторной коррекцией. Данный метод подразумевает наличие генератора шума только во время проведения калибровки, далее ГШ не участвует в процессе измерения. Метод позволяет повысить точность измерения коэффициента шума, переносить плоскость калибровки и выполнять несколько измерений за одно подключение к ВАЦ.

Для расчета коэффициента шума используется следующее отношение:

$$F = \frac{N_{out}^{DUT}}{N_0 \times |S_{21}|^2} ;$$

Где N_{out}^{DUT} – мощность шума на выходе исследуемого устройства (ИУ), выделяемая на нагрузке Z₀ (в полосе приёмника ВАЦ); N₀ – мощность теплового шума холодного (290° K) источника (в полосе приёмника ВАЦ); |S₂₁|² – коэффициент передачи мощности ИУ, нагруженного на Z₀; Z₀ – системный импеданс.

Измерение коэффициента шума в ВАЦ «Панорама» проводится дополнительно устанавливаемым шумовым приёмником.

Особенности использования опции ИКШ

- Диапазон рабочих частот 50 МГц ... 26,5 ГГц.
- Диапазон измерения КШ 0...50 дБ.
- Диапазон измерения коэффициента передачи -40...60 дБ.
- Для измерения коэффициента шума, ИУ подключается ко второму порту ВАЦ. Для достижения максимальной точности и стабильности измерения коэффициента шума, между выходом ИУ и портом 2 ВАЦ должно быть наименьшее количество элементов, вызывающих дополнительные потери.
- Выход питания ГШ +28 В расположен на задней панели ВАЦ.
- Генератор шума рекомендуется использовать с ИОШТ (ENR) > 10 дБ.

Уровень мощности на выходе ИУ

- Для обеспечения наилучшей точности измерения коэффициента шума уровень выходной мощности ИУ должен быть на 15-20 дБ ниже точки сжатия используемого ИУ во время измерения S-параметров.
- Чтобы уменьшить дрожание коэффициента шума, уровень мощности на измерительном приемнике b2 (порт 2) должен быть выше -20 дБм во время измерения S-параметров, но не превышать уровень 0 дБм.
- Лучший способ контроля мощности на входе приемника b2 (порт 2) это отображение измерительной трассы b2 (1->2).
- Для ИУ с коэффициентом усиления ниже 15 дБ используйте согласующий аттенюатор на выходе порта 1.
- Оптимизируйте измерительную схему таким образом, чтобы калибровка и измерения проводились при одних и тех же значениях выходной мощности аттенюаторов источника и приемника.

Усиление тракта шумового приемника

В ВАЦ предусмотрена возможность управления усилением тракта шумового приёмника. Настройка усиления осуществляется исходя из суммы значений ожидаемого коэффициента усиления (КУ) и ожидаемого коэффициента шума (КШ). Условия выбора усиления:

- Низкое, если 60 дБ> КУ+КШ > 45 дБ;
- **Высокое,** если КУ + КШ < 45 дБ.

Реализация измерительного блока ВАЦ «Панорама» с опцией «ИКШ» представлена на рис 1.

Рис. 1. Реализация измерительного блока ВАЦ «Панорама» с опцией «ИКШ» для измерения коэффициента шума

Для проведения измерения коэффициента шума потребуется:

- Векторный анализатор цепей «Панорама» с опцией «ИКШ»;
- Набор калибровочных мер или электронный калибратор;
- Набор кабельных сборок.

Измерение коэффициента шума усилителя со скалярной калибровкой

Пример 1.

Проведем измерение коэффициента шума (SNF), коэффициента передачи (S₂₁), S₁₁, S₂₂, развязку (S₁₂) усилителя «LNA20/1» производства компании «Микран». Частотный диапазон при измерении (RF) = 50 МГц... 20 ГГц, мощность зондирования – 15 дБм. Ожидаемый КУ = 33 дБ, ожидаемый КШ = 6 дБ. Технические характеристики усилителя приведены в таблице 1.

Таблица 1. Технические характеристики усилителя «LNA20/1» производства компании «Микран».

	10 МГц20 ГГц						
диапазон рабочих частот	10 МГц 2 ГГц	2 6 ГГц	6 14 ГГц	14 20 ГГц			
Усиление (S ₂₁), дБ	≥ 30	≥ 27	≥ 30	≥ 33			
Коэффициент шума (NF), дБ	6	4	3	6			
Выходная мощность, при сжатии на 1 дБ	1/	13	12	12			
(Р1дБ), дБм	14	15	12	12			
Возвратные потери (S ₁₁), дБ		≤ −1,	4				
Возвратные потери (S ₂₂), дБ		≤ −1	2				

Для проведения калибровки будем использовать генератор шума «ГШМ20» производства компании «Микран».

- 1. Подготовить ВАЦ к работе;
- 2. Запустить программное обеспечение Graphit;
- 3. Осуществить подключение к прибору (рис. 2);

		Ποι	иск приборов			
Описание	Адрес прибора	Тип	Серийный номер	Состояние		
P4M-18/3 1102170230	r4m-18-1102170230.tetz	P4M-18/3	1102170230	Свободен	В изоранное	
P4M-18 1102080016	r4m-18-1102080016.tetz	P4M-18	1102080016	Занят		
P4M-18 1102099999	r4m-18-1102099999.tetz	P4M-18	1102099999	Занят		
P4213/4 1132190048	r4213-1132190048.tetz	P4213/4	1132190048	Занят	Повторить поиск	
P4213/6 1132190055	r4213-1132190055.tetz	P4213/6	1132190055	Занят		
P4226/5 1133180038	r4226-1133180038.tetz	P4226/5	1133180038	Свободен	Все приборы	
P4226A 1133190021	r4226-1133190021.tetz	P4226A	1133190021	Свободен		
R4226 1133150001	r4226-1133150001.tetz	R4226	1133150001	Занят		
	Выберите прибор для подключи или перетащите запись в списо избранных приборов при помо	ения к щи мыши			Подключаться по умолчанию	

Рис. 2. Подключение к ВАЦ

4. Сбросить настройки программного обеспечения Graphit по умолчанию, для этого нажать кнопку

«Восстановить начальные параметры»

5. В панели управления «Мощность» установить мощность зондирования – 15 дБм. При установке мощности зондирования необходимо учитывать ожидаемый коэффициент усиления (КУ) измеряемого устройства, чтобы приёмник оставался в линейном режиме работы. В случае необходимости устанавливать ослабление сигнала, попадающего на второй измерительный приёмник b2. Для этого в ВАЦ с опцией «ИКШ» установлены встроенные аттенюаторы, расширяющие динамический диапазон. В нашем случае необходимо дополнительное ослабление зондирующего и принимаемого сигнала, для этого необходимо установить ручное управление аттенюаторами, 10 дБ аттенюатор генератора первого порта и 20 дБ аттенюатор приёмника второго порта (рис 3);

Р Мощноо	ть	ŝ
Старт		f
Стоп		p
Центр	-15 лБм	
Полоса	15 дом	
Точек		M
Управление аттенюаторами ручное	Į	₩8
Аттенюатор генератора (пор 10 дБ	от 1 / 2) О дБ	
Аттенюаторы приёмников (п 0 дБ	орт 1 / 2) 20 дБ	P

Рис. 3. Задание мощности зондирования и установка дополнительного ослабления с помощью внутренних аттенюаторов

6. Задать частотный диапазон измерения коэффициента шума (50 МГц ... 20 ГГц) (рис. 4);

f	Частота	ŝ
Старт	50 МГц	f
Стоп	20 ГГц	p
Центр	10,025 ГГц	R
Полоса	19,95 ГГц	Ш
Точек	501	MA
Сканирова	выкл Список	M
	Полный обзор	\otimes
	Нулевой обзор	P

Рис. 4. Задание частотного диапазона.

7. Создать измерительную трассу для измерения КШ (рис. 5).

Фанл	малиоровка	управление	Диаграмма трасса то	аркер профиль вид Сп	равка	
	1 2 2	☆ 🛛 🕢	Коэфф лог [дБ]	кш - 💱	≥ 🎯 🧕	_ • _
	🕞 СВЧ	12 20	A 2 👫 5% ·	· 🎋 • 23 🔒	ser ser ⊼ 🕷) 🛧 👤 💷
Имя	Тип Трс4 И	Кнл/Изм. КШ	Опорн. Ед./дел. П -30 сБ 20 сБ 10 Автомасштаб А	Формат Функции Козфф лог [дБ]		***
-15 дБм ФПЧ 1 кГц			<u>З</u> апомнить Ctrl+R <u>С</u> охранить Ctrl+F Удалить Del			 Автомасштаб диаграммы Ctrl+Num * Создать измерительную трассу Ctrl+N Создать изтематического трассу Ctrl+N
	-50-		<u>И</u> змерение Формат	<u>S</u> 11 S <u>2</u> 1		Выделить все трассы Ctrl+A Маркеры •
	-70-	A 800 ++	Усреднение • Фазовая задержка Фильтрация	5 <u>1</u> 2 522 Приёмники ▶		Отчет Сtrl+Р Открыть данные Сtrl+Y Сохранить данные Ctrl+T
	-90 -	*** ***	Временная область Сглаживание Накопление	Сопротивление Проводимость Преобразование		 Периодическое сохранение SnP файлов Создать диаграмму Закрыть диаграмму
			Ограничение • Статистика	• Измерение шума •	• кш иошт	Расположение диаграмм Вид

Рис. 5. Создание измерительной трассы для коэффициента шума КШ

8. Выбрать в главном меню Калибровка -> Мастер калибровки. В окне «Параметры калибровки» в поле «Тип калибровки» выбрать пункт «Двухпортовая с измерением КШ (порт 2)». В поле «Характеристика ГШ» задать файл, содержащий таблицу значений ENR (Excess Noise Ratio – избыточный коэффициент шума) используемого генератора шума. Фильтр ПЧ определяет время измерения в каждой точке и уровень шума приёмного тракта шумового приёмника. Значение в поле «Усиление тракта» подобрать исходя из соображений, приведенных в пункте «Усиление тракта шумового приемника». Настройка параметров калибровки для нашего примера изображена на рис 6. Мастер калибровки предложит подключить к измерительному порту ГШ, нагрузки ХХ, КЗ, СН к первому порту и ко второму порту, меру на проход. Провести калибровку, руководствуясь мастером калибровки.

Возможно проведение калибровки с использованием автоматического калибратора;

Р4. векторный ан айл <u>К</u> алибровка <u>Масте</u> Отклю Настри	ализатор ценеи <u>у</u> правление р калибровки чить коорекцин ОЙКА КОНФ	Диаграмма <u>Трас</u> F6 игурации			
Спользуемые порть	d		-		
• порты 1, 2		() порт 1	() no	рт 2	
онфигурация порто	в исследуемого у	стройства		0	
Соедините	ель:	Калиоровочный наоор:		Совлини	e Habopa:
1001 1. 3,5/5MA p		HKMM-13-13P NP2196180011		Соедини	TERM THE 3,5 MM
IOPT 2: 3,5/5MA B	илка 💽	HKMM-13-13P Nº2196180011	•	Соедини	тели тип 3,5 мм
Вариант калибровки	и: Вектор	ная калибровка SOLT			•
Тип калибоовки:	Ленуро		2)		
П Векторная калиб	DOEKA KIII	איז איזאפארא איזאפארא איז איז איז איז איז איז איז איז איז אי	-/	u.	1.00
Учёт отражения	от измерителя КІ	Ш	www.brp.r		IKIL V
Измерение на зон	ндовой станции		Усиление	тракта:	высокое ▼
🏸 Шаг 1 и	13 8				
рт 2 <u>ПШ</u> рт 1 XX K3 CH рт 2 XX K3 CH рты 1,2 Проход	Подключите ген ВНИМАНИЕ!!! Во подключать каб выходу +28 В на	ератор шума на порт 2. избежание короткого замыкани ель питания ВNC к ПШ, и тольк задней панели измерительного	ия в первую очер о после этого к о блока!	едь	

Рис. 6. Настройка параметров калибровки

- 9. Подключить исследуемое устройство между портами ВАЦ, как изображено на рис 1.
- 10. Результаты измерения приведены на рис 7 и рис 8.

МИКРАН

LNA-20/1_Скалярная калибровка

14.05.2020 15:10:00

P4226A 1133190021, Graphit 2.5.30

-30,78 дБ (!)

6,16 дБ (!)

КШ

Рис. 7. Результаты измерения коэффициента шума S₁₁, S₂₁, S₁₂, S₂₂ «LNA20/1» со скалярной калибровкой

4,32 дБ (!) 3,559 дБ (!) 2,772 дБ (!) 2,866 дБ (!) 3,199 дБ (!)

-17,81 μ5 (!) -14,817 μ5 (!) -13,769 μ5 (!) -16,940 μ5 (!) -13,435 μ5 (!) -9,664 μ5 (!) -10,838 μ5 (!) -15,244 μ5 (!) -11,476 μ5 (!)

3,497 дБ (!)

3,275 дБ (!)

2,980 дБ (!)

3,770 дБ (!)

Маркеры	1	2	3	4	5	6	7	8	9
Позиция	100,000000 МГц	2,000000 ГГц	3,990000 ГГц	6,000000 ГГц	8,010000 ГГц	9,990000 ГГц	12,000000 ГГц	14,000000 ГГц	16,000000 ГГц
Ш_Скалярная_калибровка	6,32 дБ (!)	4,42 дБ (!)	3,512 дБ (!)	2,892 дБ (!)	2,702 дБ (!)	3,315 дБ (!)	3,568 дБ (!)	3,151 дБ (!)	2,851 дБ (!)

Рис. 8. Результаты измерения коэффициента шума «LNA20/1» со скалярной калибровкой

Измерение коэффициента шума усилителя с векторной калибровкой

Измерение коэффициента шума с векторной коррекцией позволяет учитывать отражение от ГШ. При КУ измеряемого устройства меньше 20 дБ рассогласование оказывает значительное влияние. Векторная калибровка рекомендуется для ИУ с коэффициентом усиления меньше 20 дБ.

Пример 2.

Проведем измерение коэффициента шума (SNF), коэффициента передачи (S₂₁), S₁₁, S₂₂, развязку (S12) усилителя «LNA20/1» производства компании «Микран». Частотный диапазон при измерении (RF) = 50 МГц ...20 ГГц, мощность зондирования – 15 дБм. Ожидаемый КУ = 33 дБ, ожидаемый КШ = 6 дБ. Технические характеристики усилителя приведены в таблице 2.

Диапазон рабочих частот		10 МГц …	20 ГГц	
	10 МГц …2 ГГц	26 ГГц	6…14 ГГц	1420 ГГц
Усиление (S ₂₁), дБ	≥ 30	≥ 27	≥ 30	≥ 33
Коэффициент шума (NF), дБ	6	4	3	6
Выходная мощность, при сжатии на 1 дБ (Р1дБ), дБм	14	13	12	12
Возвратные потери (S ₁₁), дБ		≤ −1	4	
Возвратные потери (S ₂₂), дБ		≤ −1	2	

Таблица 2.	Технические характеристики	усилителя «LNA20/1» производства	компании «Микран»
-			

Для проведения калибровки будем использовать генератор шума «ГШМ20» производства компании «Микран».

- 1. Повторить пункты 1-7 указанные в предыдущем примере;
- 2. Выбрать в главном меню Калибровка -> Мастер калибровки. В окне «Параметры калибровки» в поле «Тип калибровки» выбрать пункт «Двухпортовая с измерением КШ (порт 2)». В поле «Характеристика ГШ» задать файл, содержащий таблицу значений ENR (Excess Noise Ratio избыточный коэффициент шума) используемого генератора шума. Фильтр ПЧ определяет время измерения в каждой точке и уровень шума приёмного тракта шумового приёмника. Значение в поле «Усиление тракта» подобрать исходя из соображений, приведенных в пункте «Усиление тракта шумового приемника». Настройка параметров калибровки для нашего примера изображена на рис 9. Мастер калибровки предложит подключить к измерительному порту ГШ, нагрузки ХХ, КЗ, СН к первому порту и ко второму порту, меру на проход. Также мастер калибровки предложит подключить ко второму порту ВАЦ пять произвольных нагрузок. Произвольными нагрузками послужат устройства с существенно разным согласованием. Рекомендуется использовать нагрузки из набора калибровочных мер ХХ, КЗ, СН, четвертой и пятой мерой послужат ХХ, КЗ соединенные с портом ВАЦ через аттенюатор небольшого номинала (3...10 дБ). Провести калибровки, руководствуясь мастером калибровки.

Возможно проведение калибровки с использованием автоматического калибратора.

Файл К			[F4220A 1133130021]	
	алибровка Управ	ление	<u>Диаграмма</u> <u>Т</u> рас	
1 100 2	Мастер калибр	овки	F6	
B	Настройка к	онфи	игурации	
Использу	емые порты			
	a 1, 2		🔿 порт 1 👘 по	рт 2
Конфигу	рация портов исследу	MOLO N	стройства	
	Соединитель:		Калибровочный набор:	Описание набора:
Порт 1:	3,5/SMA розетка	•	HKMM-13-13P Nº2196180011	Соединители тип 3,5 мм
Порт 2:	3,5/SMA вилка		HKMM-13-13P Nº2196180011	Соединители тип 3,5 мм
			Список калибровочных наборов	
			стикок калноровочных наобровти	
Вариант Тип кали	калибровки:	Векторн Двухпор	ая калибровка SOLT этовая с измерением КШ (порт 2)	•
Bert	oopaa kanufooeka Kiii	1	(hun to []	Un 1.05. A.V.
V Yuết	отражения от измери	теля КШ		ч. Iкiц ,
Измер	рение на зондовой ста	нции	Усиление	тракта: Высокое 🔻
				🛃 Хар-ка ПШ
a				
P	Шаг 1 из 13			
Порт 2	Шаг 1 из 13	-		

Рис. 9. Настройка параметров калибровки

- 3. Подключить исследуемое устройство между портами ВАЦ, как изображено на рис 1.
- 4. Результаты измерения приведены на рис 10 и рис 11.

МИКРАН

LNA-20/1_Векторная калибровка

15.05.2020 14:13:10

P4226A 1133190021, Graphit 2.5.30

Рис. 10. Результаты измерения коэффициента шума , S_{11} , S_{21} , S_{12} , S_{22} «LNA20/1» со скалярной калибровкой

Маркеры	1	2	3	4	5	6	7	8	9
Позиция	100,000000 МГц	2,000000 ГГц	3,990000 ГГц	6,000000 ГГц	8,010000 ГГц	9,990000 ГГц	12,000000 ГГц	14,000000 ГГц	16,000000 ГГц
КШ_Скалярная_калибровка	5,99 дБ (!)	4,35 дБ (!)	3,483 дБ (!)	2,905 дБ (!)	2,732 дБ (!)	3,194 дБ (!)	3,564 дБ (!)	3,099 дБ (!)	2,861 дБ (!)
КШ_Векторная_калбировка	5,99 дБ (!)	4,35 дБ (!)	3,483 дБ (!)	2,905 дБ (!)	2,732 дБ (!)	3,194 дБ (!)	3,564 дБ (!)	3,099 дБ (!)	2,861 дБ (!)

Рис. 11. Результаты измерения коэффициента шума «LNA20/1» со скалярной калибровкой

Измерения на зондовой станции

ВАЦ Р4226А «Панорама» предоставляет возможность проведения измерений S-параметров, коэффициента шума на зондовой станции со скалярной и векторной калибровкой. Для проведения измерения необходимо:

1. повторить пункты 1-7 указанные в первом примере;

G Р4. Векторный анализатор цепей [Р4226А 1133190021]

2. выбрать в главном меню Калибровка -> Мастер калибровки. В окне «Параметры калибровки» в поле «Тип калибровки» выбрать пункт «Двухпортовая с измерением КШ (порт 2)». В поле «Характеристика ГШ» задать файл, содержащий таблицу значений ENR (Excess Noise Ratio – избыточный коэффициент шума) используемого генератора шума. Фильтр ПЧ определяет время измерения в каждой точке и уровень шума приёмного тракта шумового приёмника. Значение в поле «Усиление тракта» подобрать исходя из соображений, приведенных в пункте «Усиление тракта шумового приемника». Настройка параметров калибровки изображена на рис 12. Первые 6 пунктов, предложенные мастером калибровки (ГШ, произвольные и известные нагрузки), позволяют сформировать плоскость калибровки КШ в коаксиальном тракте (в том сечении, в котором есть возможность подключить ГШ). Оставшиеся пункты мастера калибровки выполняются уже на зондах, с использованием нагрузок на пластине, тем самым формируется плоскость калибровки S-параметров в сечении зондов, и осуществляется перенос плоскости калибровки КШ в сечение зондов (рис. 13).

Мастер калибро.	ВКИ	50				
		FO				
Настройка ко	онфи	гурации				
и 1, 2		🔘 порт 1	0	порт 2		
рация портов исследуе Соединитель:	змого ус	тройства Калибровочный набор:		Описани	е набора:	
3,5/SMA розетка	-	HKMM-13-13P Nº2196180	011	Соедини	тели тип 3,5 мм	
3,5/SMA вилка	•	HKMM-13-13P Nº2196180	011	Соедини	тели тип 3,5 мм	
-		Список калибровоч	ных наборов	7		
калибровки: В	екторна	ия калибровка SOLT				•
бровки: Д	вухпорт	товая с измерением КШ (п	орт 2)			-
рная калибровка КШ			Фильтр	ПЧ:	1кГц	- >
отражения от измерит	еля КШ		Усилени	е тракта:	Высокое	•
испис на зопдовои стан	LUVIVI				Van un Dill	-
					Дар-катш.	
аг 1 из 13					и харжатш.	
	емые порты (1, 2 рация портов исследуе Соединитель: 3,5/SMA розетка 3,5/SMA вилка Параметры к калибровки: рорная калибровка КШ отражения от измерит рение на зондовой стан	еные порты 4 1, 2 рация портов исследуеного ус Соединитель: 3,5/SMA розетка • 3,5/SMA вилка • Параметры калиб калибровки: Векторне калибровки: Двухпор орная калибровка КШ отражения от измерителя КШ рение на зондовой станции	еные порты 4 1, 2 порт 1 рация портов исследуеного устройства Соединитель: Калибровочный набор: 3,5/SMA розетка Калибровочный набор: 3,5/SMA вилка Калибровочный набор: 3,5/SMA вилка Калибровки (порты Калибровки: Векторная калибровка SOLT бровки: Двухпортовая с измерением КШ (портажения от измерителя КШ отражения от измерителя КШ рение на зондовой станции	еные порты 4 1, 2 порт 1 горания портов исследуемого устройства Соединитель: Калибровочный набор: 3,5/SMA розетка • НКММ-13-13Р №2196180011 • 3,5/SMA вилка • НКММ-13-13Р №2196180011 • Список калибровочных наборов Параметры калибровки (порты 1-2) калибровки: Векторная калибровка SOLT пбровки: Двухпортовая с измерением КШ (порт 2) орная калибровка КШ отражения от измерителя КШ рение на зондовой станции	еные порты 1, 2 порт 1 порт 2 рация портов исследуемого устройства Соединитель: Калибровочный набор: Описани 3,5/SMA розетка • НКММ-13-13Р №2196180011 • Соедини 3,5/SMA вилка • НКММ-13-13Р №2196180011 • Соедини 3,5/SMA вилка • НКММ-13-13Р №2196180011 • Соедини Список калибровочных наборов Параметры калибровки (порты 1-2) калибровки: Векторная калибровка SOLT пбровки: Авухпортовая с измерением КШ (порт 2) оражения от измерителя КШ отражения от измерителя КШ рение на зондовой станции	еные порты 4 1, 2 порт 1 порт 2 рация портов исследуеного устройства Соединитель: Калибровочный набор: Описание набора: 3,5/SMA розетка • НКММ-13-13P №2196180011 • Соединители тип 3,5 нн 3,5/SMA вилка • НКММ-13-13P №2196180011 • Соединители тип 3,5 нн 3,5/SMA вилка • НКММ-13-13P №2196180011 • Соединители тип 3,5 нн Список калибровочных наборов Параметры калибровки (порты 1-2) калибровки: Векторная калибровка SOLT пбровки: Двухпортовая с изнерением КШ (порт 2) орная калибровка КШ отражения от изнерителя КШ рение на зондовой станции

Рис. 12. Настройка мастера калибровки

Информация может быть изменена без предварительного уведомления.

Рис.13. Схема проведения калибровки на пластине.